The Complexity of Dominating Set Reconfiguration

نویسندگان

  • Arash Haddadan
  • Takehiro Ito
  • Amer E. Mouawad
  • Naomi Nishimura
  • Hirotaka Ono
  • Akira Suzuki
  • Youcef Tebbal
چکیده

Suppose that we are given two dominating sets Ds and Dt of a graph G whose cardinalities are at most a given threshold k. Then, we are asked whether there exists a sequence of dominating sets of G between Ds and Dt such that each dominating set in the sequence is of cardinality at most k and can be obtained from the previous one by either adding or deleting exactly one vertex. This problem is known to be PSPACE-complete in general. In this paper, we study the complexity of this decision problem from the viewpoint of graph classes. We first prove that the problem remains PSPACE-complete even for planar graphs, bounded bandwidth graphs, split graphs, and bipartite graphs. We then give a general scheme to construct linear-time algorithms and show that the problem can be solved in linear time for cographs, trees, and interval graphs. Furthermore, for these tractable cases, we can obtain a desired sequence such that the number of additions and deletions is bounded by O(n), where n is the number of vertices in the input graph.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Complexity and approximation ratio of semitotal domination in graphs

A set $S subseteq V(G)$ is a semitotal dominating set of a graph $G$ if it is a dominating set of $G$ andevery vertex in $S$ is within distance 2 of another vertex of $S$. Thesemitotal domination number $gamma_{t2}(G)$ is the minimumcardinality of a semitotal dominating set of $G$.We show that the semitotal domination problem isAPX-complete for bounded-degree graphs, and the semitotal dominatio...

متن کامل

Reconfiguration of Dominating Sets

We explore a reconfiguration version of the dominating set problem, where a dominating set in a graph G is a set S of vertices such that each vertex is either in S or has a neighbour in S. In a reconfiguration problem, the goal is to determine whether there exists a sequence of feasible solutions connecting given feasible solutions s and t such that each pair of consecutive solutions is adjacen...

متن کامل

Strength of strongest dominating sets in fuzzy graphs

A set S of vertices in a graph G=(V,E) is a dominating set ofG if every vertex of V-S is adjacent to some vertex of S.For an integer k≥1, a set S of vertices is a k-step dominating set if any vertex of $G$ is at distance k from somevertex of S. In this paper, using membership values of vertices and edges in fuzzy graphs, we introduce the concepts of strength of strongestdominating set as well a...

متن کامل

Reconfiguration on Sparse Graphs

A vertex-subset graph problem Q defines which subsets of the vertices of an input graph are feasible solutions. A reconfiguration variant of a vertex-subset problem asks, given two feasible solutions Ss and St of size k, whether it is possible to transform Ss into St by a sequence of vertex additions and deletions such that each intermediate set is also a feasible solution of size bounded by k....

متن کامل

Some Results on the Maximal 2-Rainbow Domination Number in Graphs

A 2-rainbow dominating function ( ) of a graph  is a function  from the vertex set  to the set of all subsets of the set  such that for any vertex  with  the condition  is fulfilled, where  is the open neighborhood of . A maximal 2-rainbow dominating function on a graph  is a 2-rainbow dominating function  such that the set is not a dominating set of . The weight of a maximal    is the value . ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015